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a  b  s  t  r  a  c  t

We  compared  the  hydrodynamics  of replicate  experimental  mixed  cell  and  replicate  standard  Burrows
pond  rearing  systems  at the  Dworshak  National  Fish  Hatchery,  ID,  in  an  effort  to  identify  methods  for
improved  solids  removal.  We  measured  and compared  the  hydraulic  residence  time,  particle  removal
efficiency,  and  measures  of velocity  using  several  tools.  Computational  fluid  dynamics  was  used  first  to
characterize  hydraulics  in the  proposed  retrofit  that  included  removal  of the  traditional  Burrows  pond
dividing wall  and establishment  of  four  counter  rotating  cells  with  appropriate  drains  and  inlet water  jets.
Hydraulic residence  time  was  subsequently  established  in  the  four  full  scale  test  tanks  using  measures  of
conductivity  of a salt  tracer  introduced  into  the  systems  both  with  and without  fish  present.  Vertical  and
horizontal  velocities  were  also  measured  with  acoustic  Doppler  velocimetry  in  transects  across  each  of
the rearing  systems.  Finally,  we  introduced  ABS  sinking  beads  that  simulated  fish  solids  then  followed  the
kinetics  of their  removal  via  the  drains  to establish  relative  purge  rates.  The  mixed  cell  raceway  provided
higher mean  velocities  and  a  more  uniform  velocity  distribution  than did  the  Burrows  pond.  Vectors

revealed  well-defined,  counter-rotating  cells  in  the  mixed  cell  raceway,  and  were  likely contributing
factors  in  achieving  a  relatively  high  particle  removal  efficiency-88.6%  versus  8.0% during  the  test  period.
We  speculate  retrofits  of  rearing  ponds  to  mixed  cell systems  will  improve  both  the  rearing  environments
for  the  fish  and  solids  removal,  improving  the  efficiency  and bio-security  of fish  culture.  We  recommend

y  pro
d  by  
further  testing  in  hatcher
Publishe

. Introduction

Many fish hatcheries have rearing systems that are in need of
mprovements. Additional factors affecting these systems include
hanges in production goals, water availability and effluent regu-
ations. However, infrastructure modifications may  not be easily
xecuted, and decisions regarding retrofitting must be made care-
ully. Raceway systems are widely used in many aquaculture
perations, especially for salmon and trout production because
hey can utilize gravity flow to minimize pumping costs, and plug
ow (gradient) insures that higher quality water is provided to

he rearing system (Westers and Pratt, 1977; Piper et al., 1982;

edemeyer, 2001; Hinshaw and Fornshell, 2002). However, it is
ell known that circular tank rearing systems provide a uniform
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duction  trials  to  evaluate  fish  physiology  and  growth.
Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license  (http://

creativecommons.org/licenses/by/4.0/).

culture environment, operate well under a wide range of rota-
tional velocities, and provide effective particle removal (Davidson
and Summerfelt, 2004; Oca and Masaló, 2013). However, adapting
hatchery practices to circular tanks requires different systems for
handling and crowding fish, and circular tank layouts are not an
efficient use of space. A hybrid rearing unit, the Burrows pond, was
developed for trout and salmon culture in the 1960′s, designed to
incorporate the rectangular plug flow and circular pond into a single
rectangular circulating pond (Burrows and Chenoweth, 1970). Flow
into the ponds is provided through a series of nozzles at different
depths and in corners. However, in several locations where these
ponds were installed, the hydraulics and flows were inadequate to
remove waste feed and feces.

Recent innovations have been proposed to reduce solids load-
ing from effluents from traditional flow through raceway or pond
systems (e.g. MacMillan et al., 2003; Viadero et al., 2005; Stewart

et al., 2006; Sindilariu et al., 2009). Watten et al. (2000) proposed
the mixed cell raceway system as a modification for existing rect-
angular raceway or pond systems that would establish a mixed

se (http://creativecommons.org/licenses/by/4.0/).
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ow reactor to improve current velocities and solid scour while
liminating metabolite concentration gradients.

A mixed cell raceway (MCR- Watten et al., 2000) consists of
eparate cells, each defined by center drains, with inlets that are
ertical pipe sections extending from above water level to the tank
oor and positioned at the corner of the cells. The number of cells
an vary, depending on the relationship of length and width of the
ells. The vertical inlet pipes have jetted ports that direct the water
nto each of the cells tangentially and establish the water circula-
ion. Water exits each cell through a centrally located bottom drain
overed with a screen. An outside standpipe regulates the height
f water in the system. Ebeling et al. (2005) modified the MCR  con-
ept for partial reuse with a ‘Cornell type’ dual drain system so that
olids could be separated easily. In their studies, velocities were
igh enough to scour, remove and collect solids separate from the
eturn flow. Labatut et al. (2007) measured velocity profiles in each
f the cells of a MCR, and found no significant differences between
eplicate cell velocity contours and vector plots. Recent 3D simula-
ions of a MCR  using computational fluid dynamics showed strong
orrelations and data agreement between the model and measures
f velocity at three depths measured (Labatut et al., 2015).

The measures of hydraulic effects and mixing in any system can
e described by either a hydrodynamic model or a reactor model
Haan et al., 1994). Hydrodynamic models can be correlated with
sh performance and be used to explain feed and feces distribution

hroughout the system. The models assist in calibrating a system
o assure that feed is not removed too quickly, but that waste accu-

ulation is minimized.
Rapid removal of solids from rearing systems can improve

verall fish health (De Schryver et al., 2008; Castro et al., 2011),
mprove bio-security (Oidtmann et al., 2011) and help with regula-
ory compliance regarding solids discharge (Cripps and Bergheim,
000; Boyd, 2003). In addition to removing pathogenic bacteria
nd viruses from accumulating, increasing attention has focused on
djusting rearing systems to reducing the risks of transfer of inva-
ive aquatic species (Oidtmann et al., 2011; Williams et al., 2013;
oppe et al. 2016). Invasive mollusks, such as the New Zealand
udsnail Potamopyrgus antipodarum, and zebra/quagga mussels
reissena sp. have become established in source waters of sev-
ral conservation and commercial fish hatcheries in North America
Sykes et al., 2011; Nielson et al., 2012). Management guidelines
nd regulations require that the risks of transport be reduced with
elected management tools that may  include treatments and depu-
ation strategies (Waller et al., 1996; Bruce et al., 2009; Bruce and

offitt, 2010). With disinfection or depuration tools, it is important
hat feces and associated waste materials be discharged from the
roduction system to insure that no live materials remain with the
sh to be transported.

The objectives of this study were to describe and evaluate a Bur-
ows pond retrofit designed to establish mixed cell behavior within
he confines of the existing Burrows pond shell while allowing for
peration solely on the limited hydraulic head available at the site.
wo full scale test tanks were constructed then compared with
wo standard Burrows ponds in terms of particle removal kinetics,
ater velocities and water residence time distributions. Tests of

article removal kinetics were conducted using particle sizes com-
arable to fish feces as well as the New Zealand mudsnail (NZMS)
hich is of concern to the National Fish Hatchery Program.

. Materials and methods
.1. Location of trials and experimental systems

Studies were conducted at Dworshak National Fish Hatchery,
hsahka, Idaho. The existing Burrows ponds (BP) allowed for a
ngineering 74 (2016) 52–61 53

maximum depth of 1.5 m (Fig. 1). Water was  delivered to the units
through two  inlet pipes, each with 7 ports at opposite corners of the
raceway. A center wall was  located 2.9 m from the end walls with
a catwalk on top to assist personnel with maintenance of the BP
and fish. At opposing ends of the center wall, a floor drain measur-
ing 2.4 m by 0.3 m was  used to remove water and solids. The drains
were covered with slotted steel panels (60%). The drain boxes emp-
tied into a 30.5 cm effluent pipe that connected to a water level
control box containing dual standpipes. One drain section directed
the effluent to the hatchery reuse system while the other drain
directed effluent to the settling ponds.

Two  BPs were modified for our study to create 4-cell MCRs
through removal of the BP center walls and installation of four
center drains (Fig. 1). These circular drains were screened with a
60% open plate and positioned on a line 30.48 cm from the vessels
longitudinal axis which allowed for use of the original BP effluent
conduit present below grade. Piping was added above the water line
to transport inflow water to down legs in each cell that distributed
flow tangentially through four or eight jet ports to establish the
counter rotating cells (Fig. 2). Each resulting MCR  cell measured
5.72 m long by 5.18 m wide which established a cell specific length
to width ratio of 1.1. The overall length to width ratio of the MCR
remained unchanged from the original BP configuration, i.e., 4.41. A
standpipe in the water level control box was used to control water
depth in the MCR. The wetted surfaces of all test rearing units were
coated with Krete Kote (Multicoat Corporation, Rancho Santa Mar-
garita, CA) prior to our hydrodynamic evaluations to reduce the
shear stress associated with the original pitted concrete surfaces.

To test the hydraulic conditions with fish, Steelhead Trout
(Oncorhynchus mykiss) were placed into the MCR  and BP as sub-
yearlings in October 2009 and held until smolt release in April 2010.
Each unit was  stocked with 31,500 fish. Biomass loadings were esti-
mated from fish sizes at the time of water hydraulic residency trials
conducted in November and March (Table 1). To adjust for the dis-
placement of water by fish biomass, we assumed each kg of fish
displaced equal L of water.

2.2. Hydraulic characteristics

We initially used computational fluid dynamics (CFD) software
and analysis (Blue Ridge Numerics, Charlottesville, VA) to test the
ability of the proposed BP retrofit to establish the desired counter
rotating cells despite use of the offset center drains and distorted
cell dimensions. Initial CFD simulations were performed using the
planned MCR  design operated under the following 3 conditions of
flow rate (m3/min) and water depth (m): 2.27, 0.91; 2.27, 0.79; 1.89,
0.91. A fourth run was performed with cell drains centered at a flow
rate and water depth of 2.27 m3/min and 0.91 m.  All runs provided
steady state flow vectors as well as mean velocities established for
a grid that included 96,912 points distributed uniformly over the
floor area of two adjacent cells of the MCR  on a plane 1.3 cm or
34.8 cm above the tank floor. All runs were also performed at a
simulated water temperature of 12 ◦C and with the design pressure
drop of 15.2 cm H2O across cell drains.

Following the CFD runs we  established the hydraulic character-
istics of the as-built MCR  and standard BP test tanks at 3 points in
the standard hatchery rearing cycle. Trials were conducted before
fish were introduced (September 2009), then with zero-age fish
(23 November 2009), and in the spring (18 March 2010) with pre-
release yearling smolts. Flows for test rearing systems throughout
trials were set for 2.27 m3/min to obtain preferential mixing and
flow, and to maintain equivalent hydraulic characteristics. Equal

flow rates were verified using NaCl as a tracer for each test. To
provide the tracer, a stock solution of 60 g/L NaCl, mixed with a
power head pump in a 1514 L tank was introduced into the test
systems with a double-headed peristaltic pump (Masterflex Model
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Fig. 1. Schematic of Burrows pond and mixed cell raceway rearing systems evaluated in the studies. The location of inflow and drains, and transects measured for flow and
velocity models is diagramed.

Table 1
Summary of estimated biomass and mean total length and mean weight of of Steelhead Trout reared in the mixed cell and Burrows pond during modeling of hydraulics with
a  NaCl tracer, Dworshak National Fish Hatchery, 2009–2010.

Mixed cell Burrows pond

Biomass Mean Biomass Mean

Date and age of fish (kg) Total length (mm)  weight(g) (kg) Total length (mm) weight(g)

34 

58 

7
t
o

r

24-Nov-09 age 0 1071 147 

18-Mar-10 yearling 1092 178 

545-30) into valve ports in the inflow pipes with 1.27 cm diameter

ygon tubing. The pumping rate was measured by timing the rate
f fill or depletion of a known volume.

The conductivity of each test system was measured and
ecorded with an YSI 556 MPS  multiprobe meter (YSI, Inc., Yellow
1288 156 39
1172 183 63

Springs, Ohio) before and during tests in the effluent standpipe box

of each system. The tracer solution was considered fully mixed in
the rearing unit when the conductivity of effluent remained con-
sistent for 30 min.
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Fig. 2. Plan view, cross section, and isometric profiles of the mixed cell raceway, with details of the dimensions of the down-legs, drains and standpipe.
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Discharge (Q) in L/min was calculated using the relationship:

 = q
C1 − C2
C2 − C0

(1)

 = the discharge (L/min) of the concentrated salt solution injected
nto the flow;

C0 = the natural or background conductivity (mS/cm);
C1 = the conductivity (mS/cm) of the concentrated salt solution;
C2 = the conductivity (mS/cm) in the effluent after full mixing,

hich includes background conductivity (Haan et al., 1994; BOR,
001).

Once the salt solution was fully mixed into the MCR  or BP and
nflow was 2.27 m3/min, the valves to the salt ports were closed and
he depletion of conductivity was recorded for 4 h to determine the
ate of depletion. Depletion curves for the tracer in each trial were

odeled using the proportional change in conductivity over time.
he change in conductivity was normalized (NC) to a range of 0–1
or each trial by the following equation:

C = Ci − Co
Cmax − Co

= �C

�Cmax
(2)

Ci is conductivity in mS/cm at time i;
C0 is natural or background conductivity (mS/cm);
and Cmax is the maximum conductivity (mS/cm) or the conduc-

ivity before peristaltic pump was shut down.
Chemical engineering reactor equations were used to calcu-
ate a series of hydraulic characteristics from the step down
nalysis of the salt tracer concentration (Levenspiel 1979). They
ncluded mean hydraulic residence time (t̄c Eq. (3)) of water within
he rearing units, the variance about the mean hydraulic resi-
dence time (�2 Eq. (4)), and variance adjusted hydraulic residence
(Eq. (5)).

(t̄c) =
∑n

i=1ti�Ci
�Cmax

(3)

�2 =
∑n

i=1t
2
i
�Ci

�Cmax
− (t̄c)

2 (4)

�2

(t̄c)
2

= 2
(
D

�L

)
− 2

(
D

�L

)2 [
1 − exp−�L

D

]
(5)

The mean hydraulic residence time described the time to replace
half of the water, and the variance estimated the distribution to
explore long depletion times in the data. The axial dispersion num-
ber

(
D
�L

)
was  used to establish the extent of mixing within the tanks

evaluated. A D
�L > 0.01 indicates a large deviation from ideal plug

flow movement toward mixed flow reactor behavior (Levenspiel,
1979).

A theoretical retention time,t̄, was estimated by using the vol-
ume of the rearing units divided by the discharge rate. We  adjusted
the volume of the rearing units for the volume displaced by the
biomass of the fish at each trial. The mean hydraulic residence time,
t̄c , was compared to the theoretical hydraulic residence time

(
t̄
)

to
determine the turnover efficiency, the extent of stagnant regions,
SR, and the volume of the stagnant regions, (volume*stagnant
regions) as a percentage of volume as follows:

SR = 1 − turnoverefficiency = 1 − t̄c/t̄ (6)

The turnover efficiency indicated how quickly water particles

were removed from the BP and MCR, and stagnant regions were
the reciprocal of turnover efficiency.

To estimate a rate of depletion, we  transformed the normal-
ized conductivity with a negative natural logarithm and obtained
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 linear regression of these values with time. We  compared the
lopes of the different regressions with analysis of covariance, and
sed single degree of freedom comparisons to determine significant
ifferences between trials. All statistical analyses were conducted
sing SAS 9.3 (SAS Institute, Cary, NC).

.3. Directional velocity profile

To provide a profile of the directional velocity in each rearing
nit, we recorded velocity profiles before fish were introduced
sing a SonTek Argonaut-Acoustic Doppler Velocimeter (Son-
ek/YSI, San Diego, CA). The instrument measurement precision
as within 0.001–6 m/s  with a resolution of ±0.0001 and accuracy

f ±1% of measured velocity. Measurements in each direction (x,
, z) were made every 0.305 m across horizontal transects estab-
ished in each rearing unit, and at two depths: 0.305 and 0.610 m.
t each reading, velocities and speeds were recorded over an eight
in  period, with the instrument reporting averages each 15 s.

hese 15 s averages were averaged together to calculate the aver-
ge velocity or speed for that transect at each point and depth
easured.

Velocities in the BP were recorded along two transects, each
.16 m from both end walls (transects 1 and 4; Fig. 1A), 5.817 m
rom end wall over first drain (transect 2; Fig. 1A), and in the middle
f the pond at 11.43 m (transect 3; Fig. 1A). The horizontal locations
f transects in the MCR  were: 2.8 m from the end wall and 0.254 m
rom the first drain (transect 1; Fig. 1B); 8.6 m from the end wall and
.254 m from the second drain (transect 2; Fig. 1B). An additional
ransect was measured at 90◦ from the center of drain 1 to the
enter of drain 2 between the two vertical cross sections (transect
; Fig. 1B).

Measurements from transects in the MCR  were transposed and
uplicated (Fig. 1) in a similar fashion as Labatut et al. (2007) to pro-
ide a model for the complete rearing unit, and data were plotted
ith contour and vector plots (Systat Software, Inc., San Jose, CA.).
e also measured velocities along one cross section at 0.61 m in

he BP and 0.305 m in the MCR  during the particle removal studies
o verify that flow characteristics were similar. Average velocities
ere compared with paired t-tests.

.4. Particle removal

To evaluate the removal of small particles similar to trout fecal
aterial and/or small invasive mollusks such as NZMS, we diverted

ffluent from drains in the BP and MCR  to an adjacent BP for
valuation. To capture the effluent, we plugged each drain with
nflatable pipe plugs, and modified the perforations of the drain
creens to accommodate a 5.1 cm-diameter fitting in the center. A
.1 cm-diameter PVC pipe was then attached about 5.1 cm below
he drain screen and configured up out of the unit. To remove
ater from the plugged drains, we used trash pumps (Gasoline

PT3 Tsurumi Pump, Glendale Heights, IL) calibrated to provide
68 L/min each for a total of 2272 L/min to match the input flow.
ll effluent was filtered through 80 �m mesh plankton nets, 30 cm
iameter by 90 cm long. We  rotated several nets to process the
ontents of each cod end over time. We  placed a 100 �m mesh
lankton tow net with the bottom stitched together inside the
tandpipe emerging from each rearing system to capture any
articles that may  not have been captured by the effluent diver-
ion.

The particles tested were sinking, cylindrical acrylonitrile buta-
iene styrene (ABS) beads, 3 mm long and 3 mm outside diameter

ith a specific gravity of 1.05 (Summerfelt and Timmons, 2000).
eplicated tests of particle removal efficiency were conducted dur-

ng June 2010 at design flows of 2271 L/min after fish were released
rom the rearing systems. For each trial of removal efficiency, a
ngineering 74 (2016) 52–61

known quantity of beads (dry weight) was hydrated. For the first
two trials of the MCR, 4535 g of beads were introduced in a man-
ner as if we  were scattering feed particles, placing approximately
1134 g into each cell, over 1 min. For the third trial, we increased
the weight of beads introduced (12,600 g) into the MCR, 3150 g
into each cell. Beads were collected from the pumped effluent with
plankton nets at intervals of 2.5, 6, 10, 15, and 20 min  for trials 1and
2, and then at intervals of 1, 5, 10, 15, and 20 min  for trial 3. For each
test in the BP, 4535 g of beads were distributed from the center wall
over the entire length of the BP over l min. Beads were collected at
2.5 min  intervals until 10 min, 5 min  intervals until 20 min  and then
10 min  intervals until 50 min had elapsed. The beads collected from
each sampling interval and trial were stored separately and were
later dried and weighed to evaluate the cumulative mass removal
by each time interval.

2.4.1. Data modeling and analysis
We calculated a mean and variance of hydraulic residence time

of the particles. The pulse response data were analyzed with the
mixing cup method with “sloppy” input of tracer (Levenspiel, 1979).

t̄c =
∑n

i=1ti�tiCi
�tiCi

/ (output/input) (7)

�2 =
(∑n

i=1t
2
i
�tiCi∑n

i=1�tiCi
− (t̄c)

2
)
/ (output/input) (8)

The rate that the beads were flushed from the drains, k, was
calculated using the following equation (Summerfelt and Timmons,
2000):

percent flushing due to enrichment=
k

k + Q
V

× 100 (9)

where k can also be found by plotting the negative natural log of
the fraction of solids remaining versus time where (Q/V + k) is equal
to the slope parameter.

3. Results

3.1. Computational fluid dynamics

CFD runs demonstrated the ability of the BP retrofit to estab-
lish counter rotating cells with velocities and vectors expected to
purge settleable solids. Jet wake on the long axis of each cell tended
to rise toward the surface while jet wakes associated with the
short axis tended to drop and encourage the cell to cell exchange
observed by Watten et al. (2000) at a smaller scale. Vortices linked
to individual cell drains at the surface were established along the
longitudinal centerline of the vessel while the apex of the vortex
angled from the surface position to the screened surface of the
drain. Down leg piping produced local low velocity regions. Use
of the existing drain below grade and linked to the displaced cen-
terline of individual cell drain plates reduced the mean velocity
near the floor by 2.2% when compared to the centered drain posi-
tion, i.e., at a flow rate of 2.27 m3̂/min and with a working depth
of 0.91 m predicted velocities were 9.65 cm/s versus 9.44 cm/s.
Under these same operating conditions, and with the off center
drain configuration, the mean velocity increased from 9.5 cm/s near
the floor to 10.4 cm/s at mid  depth demonstrating that velocities
were lower along the tank floor than at the tank surface. Tank
water depth had little effect on mean velocity when operating at

a flow rate of 2.27 m3̂/min; at the floor and mid  depth sampling
planes, velocities were 9.44 and 10.4 cm/s at 0.91 m and 9.42 and
10.57 cm/s at 0.79 m,  respectively. Mean velocities were sensitive
to changes in flow rate dropping from 9.44 cm/s to 7.86 cm/s as flow
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ig. 3. Linear models of ln-normalized conductivity versus time for mixed cell race-
ay  (MCR) and Burrows pond (BP) measured at three times, two  of which were with
sh.

as reduced from 2.27 to 1.89 m3̂/min. Water depth was fixed at
.91 m.

.2. Hydraulic characteristics using tracer

To eliminate the bias associated with fluctuations in the conduc-
ivity measurements, we truncated our depletion data, removing
he last 5% of all measures in the tail of distribution at low lev-
ls and thus report the 95% depletion (Table 2). When the systems
ere without fish or with 0-age fish, depletion of the tracer was

bout 10 min  slower in the BP than in the MCR. Mean residence
ime for all units was lower than the theoretical hydraulic res-
dence time of approximately 50 min  (Table 2). In the MCR, the
ime to depletion of tracer increased with size of fish, and in

he BP the estimated time to depletion was shortest with pre-
elease smolts (Fig. 3). We  found significant differences among the
lopes of regressions fit to the ln-transformed normalized conduc-
ivity (F = 48,103; P < 0.0001). Multiple comparisons among slopes
ngineering 74 (2016) 52–61 57

showed the presence of larger fish the slope of the depletion of salt
tracer in the BP(P < 0.05).

From these measures, we  estimated that the proportion of stag-
nant regions was  similar between the two systems (about 22%;
Table 2). Variance was higher in measures in the BP with no fish and
0-age fish, but reversed in March with the pre-release smolts. The
calculated dispersion factor supported considerable mixing in both
systems, and large variances indicated large amount of dispersion
and mixing.

3.3. Directional velocity profile

The MCR  had higher mean velocities and more uniform velocity
distributions compared to the BP (Figs. 4 and 5). Mean velocities
were 0.234 m/s  for the MCR  and 0.168 m/s  for the BP. The veloc-
ities measured at the two depths were not significantly different
(P > 0.05). Velocity profiles of the MCR  were consistent with the CFD
models with lower velocity occurring toward the bottom. The con-
tour and vector plots illustrate clearly the areas around the drains
of the mixed cell that had slower velocity, and the areas near the
walls with the fastest velocity. In the BP, all velocities were low, and
many areas were 0.2 m/sec and lower (dark green and blue, Fig. 5).
The highest velocity was  observed nearest to the water jets, and
water flow in the BP was mostly in one direction, away from the
jets and toward the drains.

3.4. Small particle removal efficiencies

We found no significant differences between the velocities dur-
ing normal operations tested with salt tracer and those measured
during trials with drains plugged and effluent removed with trash
pumps (Tables 2 and 3). Thus, we were able to model empirical
and theoretical data to determine the hydraulic characteristics of
the small particles (beads) following introduction into the rearing
units. In the MCR, 88.6% of the beads introduced into the system
were recovered in the plankton nets, compared with a mean of only
8% for the BP. The mean hydraulic residence time for the beads was
12.2 min  in the MCR  versus estimates of more than 273 min  in the
BP. The beads in the mixed cell were removed 4 times faster than the
water particle removal rate estimated with the salt tracer (12.2 min
compared to the theoretical residence time of 47.6 min). However,
water in the BP moved out of the system at two  to ten times faster
than did the beads, which indicated that the beads were not carried
out by the water.

The rate of removal associated with the force of the MCR  drains
corresponded to an average of 90.7% of the beads being removed by
the forces of the drain. The removal of the beads from the drain of
the MCR  fit a first order kinetics model, and percent flushing due to
enrichment determined how much of the removal was  associated
with the mass action of the water flow (V/Q) versus the enrichment
of the beads. In the BP, the estimate of flushing rate k was  so low
that only beads that were transported out of the system with the
water column were collected, and most of the beads settled before
being flushed down the drain.

4. Discussion

Our study provides the first assessment of a large MCR  in a
side-by-side field comparison with BP with and without fish. In
addition, we  evaluated the hydraulic characteristics with two sizes
of fish. The modification of two BP into two MCR  systems was
undertaken as a research effort by hatchery managers at the Dwor-

shak National Fish Hatchery, Idaho, to determine if personnel costs
for pond cleaning could be reduced, fish health and performance
could be improved and the overall fish rearing environment could
be improved by improvements in water quality. The Dworshak
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Table 2
Hydraulic characteristics of the mixed cell raceway and Burrows pond at three time periods, two of which were with Steelhead Trout (see Table 1). Rearing volume adjustments
were  made for fish loading, and discharge was measured at effluent standpipe. Hydraulic measurements were made in September before fish were placed into the systems,
and  then at two  times during rearing (November and March). Calculations were made using Eq. (3) through (6). The slopes of the linear regression of the negative natural
log  of the normalized conductivity were compared and superscripted values with the same common letters did not differ (P > 0.05).

Mixed cell Burrows pond

Sept No Fish Nov 0-age fish Mar  Pre-release smolts Sept No fish Nov 0-age fish Mar Pre-release smolts

Volume (L) 116,210 115,139 115,118 113,800 112,510 116,842
Discharge (L/min) 2271 2315 2277 2234 2240 2427
95%  depletion of tracer (min) 104 105 107 115 115 103
Theoretical residence t̄(min) 51.17 49.74 50.56 50.94 50.23 48.14
Mean hydraulic residence t̄c (min) 38.58 37.74 38.97 40.42 40.73 36.99
Variance �2 (min) 76.63 103.42 178.14 173.49 161.62 129.02
Variance adjusted hydraulic residence �2/t̄2c 0.05 0.07 0.12 0.11 0.10 0.09
Mixing rate D/�L 0.03 0.04 0.06 0.06 0.06 0.05
Proportion stagnant region SR 0.25 0.24 0.23 0.20 0.19 0.23
Regression slope normalized conductivity 0.0296 b 0.0288b 0.0276c 0.0264d 0.0267d 0.0294e

Table 3
Hydraulic characteristics of the mixed cell raceway and Burrows pond during repeated trials of particle (beads) removal conducted after fish were released from rearing
systems. Calculations were made using Eqs. (7) through (9). The volume of each rearing unit during trials was maintained at 108,160 L and 103,168 L for the mixed cell and
Burrows pond, respectively. * indicates parameters were not estimable due to poor removal of particles from the system.

Mixed cell Burrows pond

Trial 1 Trial 2 Trial 3 Mean (SE) Trial 1 Trial 2 Mean (SE)

Theoretical residence t̄  (min) 47.6 47.6 47.6 47.6 46.0 46.0 46.0
Percent particles collected 97.3 97.7 70.8 88.6 (15) 6.0 9.9 8.0 (2.8)
Flushing  rate k/min 0.42 0.15 0.17 0.25 (0.15) * * *
Percent flushing due to enrichment 95.3 87.9 89.0 90.7 (3.98) * * *
Mean hydraulic residence tc (min) 16.7 10.1 9.9 12.2 (3.9) 452.8 94.5 273.7 (253.4)
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ational Fish Hatchery, Idaho, rears about 2 million Steelhead Trout
ncorhynchus mykiss annually that are released as smolts as part of

 U.S. Army Corps of Engineers dam mitigation program. Fish are
roduced in 84 replicate Burrow’s type ponds measuring 22.86 by
.18 m.  Poor hydraulic conditions allow for inactive regions that,

n turn, allow for the accumulation of waste solids. Modifications
f the suite of BP were proposed as the least cost. In addition, the
CR system was proposed to improve bio-security measures to

educe transporting invasive species in the feces of fish (Bruce and
offitt, 2010). Additional modifications of the design could have

een made to separate the solid waste particles into a separate
tream, but were not part of this study.

Our analysis of the fluid responses in the two systems using a
alt tracer showed both systems had measured mean water parti-
le residence times that were lower than theoretical estimates. The
ariances around these measures were high. In the MCR, the fish
ffect could be observed to increase the variance, but fish reduced
he variance in the BP (Table 2). The depletion of tracer was  nearly
0 min  faster in the MCR  over the BP when no fish or small fish were
resent. Studies by Rasmussen et al. (2005) reported increased
ean residence time ratios when fish were present and at two

ow rates. Our studies found similar or lower mean hydraulic resi-
ence times occurred with fish in the rearing systems. Mixing rate

n our studies increased with fish in the MCR, but decreased some-
hat with larger fish in the BP. Rasmussen et al. (2005) reported

ecreases in mixing with fish at both flow rates they tested. Clearly
he size and density of fish in the system can affect the hydraulic
haracteristics, and should be considered in system design and
peration. Our measures of tracer were all at the outflow, but
asmussen et al. (2005) measured both outlet-based and in-tank

ispersion.

Differences in hydrodynamics between the BP and MCR  became
ost clear during evaluations of small particle removal compared
193.14 (60.8) 5614.1 3689.9 4652.0 (1360.6)

with the depletion of water particles. We  recovered only 8% of the
3 mm beads introduced into the BP, but over 88% of all beads intro-
duced into the MCR  were recovered. The differences in velocity
between the two systems was pronounced, and most of the BP
velocities were less than 0.15 m/sec (Figs. 4 and 5). This velocity
gradient was not sufficient to move the particles introduced into
the system during the trials. The more complete and efficient small
particle removal in the MCR  demonstrated that waste feed and
feces were quickly flushed from the rearing vessel, reducing the
possibility of water quality degradation from solids breakup and
nutrient leaching in stagnant areas. Moreover, rapid removal of
solids reduced the reservoirs for bacterial and viral pathogens asso-
ciated with solids and feces (Wold et al., 2014). Our  tests did not
evaluate a range of particles as did Labatut et al. (2015) who  sim-
ulated the residence time for particles from 1 � to 3000 �m over a
36 min  period in a similar sized three-cell MCR. Their simulations
used particles of the similar specific gravity as our trials, (around
1.05). Labatut et al. (2015) estimated that only 5% of the smallest
particles would be removed, and ∼ 50% of particles 10 �m would be
removed. They estimated nearly all the particles 100 �m would be
removed. Our empirical tests with 3-mm particles observed a lower
mean residence time (12.2 min  vs. 6.9 min) than times simulated by
Labatut et al. (2015).

The hydraulic tests were conducted in a field trial setting and
hatchery staff controlled the flow, feed, and fish during the stud-
ies. During the length of the rearing program, the hatchery staff
observed changes in the flows in the units thus affecting the
hydraulics. However, before any of our measurements and obser-
vations of fish behavior, we adjusted flows to be as designed. The
Steelhead Trout observed in the MCR  aligned with the direction of

flows and were distributed throughout the circular current and the
individual cells. Fish were observed swimming in and out of the
vortex of each cell. In contrast, fish in the BP congregated around
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Fig. 4. Velocity contours (m/s) and vector plots at 0.305 m from surface (top plot) and 0.610 m from surface (bottom plot) in the mixed cell raceway system.
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Fig. 5. Velocity contours (m/s) and vector plots measured at 0.305 m from the

he inlet jets and in areas of highest velocity. Watten et al. (2000)
uggested swimming behavior required by fish in the MCR  should
ondition fish and increase white mussel aerobic scope, improve
ardiac output, and enhance oxygen carrying capacity in the blood.
ecent physiological studies and reviews of conservation hatch-
ry operations support that opportunities for exercise can result in

igher growth rates, muscle mass development, reduced aggres-
ion, and increased survival (Flagg and Nash, 1999; Ibarz et al.,
011; Palstra and Planas, 2011; Palstra et al., 2015).
ce (top) and 0.610 m from the surface (bottom) in the Burrows pond system.

The MCR  design provides higher velocities and high dispersion
that can remove waste particles, lowering the risk of disease and
the amount of physical cleaning needed by hatchery personnel.
The presence of fish in MCR  increased mixing of water particles,
and we  propose that the MCR  could be a tool to depurate fish
prior to release, removing fecal particles that might contain inva-

sive NZMS or other small invasive invertebrates from the water
column. The high velocities and the low particle residence times
of the MCR  support such a strategy. Haynes et al. (1985) demon-
strated that NZMS could remain in place at velocities of 30 cm/s.
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n conclusion, our studies provide strong support for positive out-
ome from retro-fitting BP rearing systems into MCR. Additional
tudies are recommended to document the operational costs and
anagement challenges of operations, as well as studies of fish

ealth, physiology, and survival in the rearing environment. Fur-
her comparisons could include studies of return rates of adults
ollowing ocean rearing over several years of production.
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